Duprime and Dusemiprime Modules

نویسندگان

  • John E. van den Berg
  • Robert Wisbauer
چکیده

A lattice ordered monoid is a structure 〈L;⊕, 0L;≤〉 where 〈L;⊕, 0L〉 is a monoid, 〈L;≤〉 is a lattice and the binary operation ⊕ distributes over finite meets. If M ∈ R-Mod then the set ILM of all hereditary pretorsion classes of σ[M ] is a lattice ordered monoid with binary operation given by α :M β := {N ∈ σ[M ] | there exists A ≤ N such that A ∈ α and N/A ∈ β}, whenever α, β ∈ ILM (the subscript in :M is omitted if σ[M ] = R-Mod). σ[M ] is said to be duprime (resp. dusemiprime) if M ∈ α :M β implies M ∈ α or M ∈ β (resp. M ∈ α :M α implies M ∈ α), for any α, β ∈ ILM . The main results characterize these notions in terms of properties of the subgenerator M . It is shown, for example, that M is duprime (resp. dusemiprime) if M is strongly prime (resp. strongly semiprime). The converse is not true in general, but holds if M is polyform or projective in σ[M ]. The notions duprime and dusemiprime are also investigated in conjunction with finiteness conditions on ILM , such as coatomicity and compactness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON PROJECTIVE L- MODULES

The concepts of free modules, projective modules, injective modules and the likeform an important area in module theory. The notion of free fuzzy modules was introducedby Muganda as an extension of free modules in the fuzzy context. Zahedi and Ameriintroduced the concept of projective and injective L-modules. In this paper we give analternate definition for projective L-modules. We prove that e...

متن کامل

On Rickart modules

Let $R$ be an arbitrary ring with identity and $M$ a right $R$-module with $S=$ End$_R(M)$. The module $M$ is called {it Rickart} if for any $fin S$, $r_M(f)=Se$ for some $e^2=ein S$. We prove that some results of principally projective rings and Baer modules can be extended to Rickart modules for this general settings.

متن کامل

Strongly noncosingular modules

An R-module M is called strongly noncosingular if it has no nonzero Rad-small (cosingular) homomorphic image in the sense of Harada. It is proven that (1) an R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingula...

متن کامل

A Note on Artinian Primes and Second Modules

 Prime submodules and artinian prime modules are characterized. Furthermore, some previous results on prime modules and second modules are generalized.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000